CONSTANTS

Description	Value
Acceleration of gravity on Earth (g)	9.81 m/s ²
Speed of light in a vacuum (<i>c</i>)	3.00 × 10 ⁸ m/s
Planck's constant (<i>h</i>)	6.63 × 10 ^{−34} J•s = 4.14 × 10 ^{−15} eV•s
Electron rest mass	9.11 × 10 ^{−31} kg
Proton rest mass	1.67 × 10 ⁻²⁷ kg
Charge of electron	−1.60 × 10 ⁻¹⁹ C
Coulomb's constant (<i>k_e</i>)	9.0 × 10 ⁹ N•m ² /C ²
Boltzmann constant (k _b)	1.38 × 10 ⁻²³ J/K
Gas constant (<i>R</i>)	8.31 J/(mol•K)
Gravitational constant (G)	6.67 × 10 ^{−11} N•m²/kg²
Permeability of free space (μ_0)	4π × 10 ⁻⁷ T•m/A
Avogadro's number	6.02 × 10 ²³ mol ^{−1}

FORMULAS

NOTES

Not all formulas necessary are listed, nor are all formulas listed used on this test.

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.

Mathematics	Matter and Its Interactions
$C = 2\pi r$	E = hf
$A = \pi r^2$	$E = mc^2$
$SA = 4\pi r^2$	$\gamma = \frac{1}{\sqrt{1-2}}$
$V = \frac{4}{3}\pi r^3$	$\sqrt{1-\frac{v^2}{c^2}}$
	$hf = \phi + eV$
	$\Delta x \Delta p \geq h$
	$\Delta E \Delta t \ge h$
	$p = \frac{h}{\lambda}$

Motion and Stability: Forces and Interactions	Motion and Stability: Forces and Interactions in Fields and Circuits
$v_f = v_i + at$	$F = \frac{Gm_1m_2}{r^2}$
$x_f = x_i + v_i t + \frac{1}{2} a t^2$	$F = \frac{k_e q_1 q_2}{r^2}$
$v_f^2 - v_i^2 = 2a(x_f - x_i)$	v^2
F = -kx	$a_c = \frac{1}{r}$
$F \leq \mu N$	$\mathbf{E} = \frac{\mathbf{F}}{q_0}$
$F \Delta t = \Delta p$	$\mathbf{F} = \left \frac{\Delta V}{\Delta V} \right $
$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$	$- \Delta r $
$\omega_f = \omega_i + \alpha t$	$V = \frac{\kappa_e q}{r}$
$v = r \omega$	$R = \frac{\rho \ell}{A}$
$a = r\alpha$	V = IR
$r = \frac{\sum mr}{\sum mr}$	$R_s = \sum R_i$
$\sum m$	$\frac{1}{R_{\rm e}} = \sum \frac{1}{R_{\rm e}}$
$I = \sum mr^2$	P = IV
$\tau = r \times F$	$C = \frac{Q}{T}$
$\Sigma \tau = I \alpha$	V
L = r × p	$C_p = \sum C_i$
$L = I\omega$	$\frac{1}{C} = \sum \frac{1}{C_i}$
	$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$
	$\mathbf{F} = I\ell \times \mathbf{B}$
	$\varepsilon_{\text{ave}} = -\frac{\Delta \varphi}{\Delta t}$
	$\varphi = B_{\perp}A$

FORMULAS (continued)

FORMULAS (continued)

Energy	Waves and Their Applications in Technologies for Information Transfer
$W = F \Delta x$	$a = -\omega^2 x$
$KE = \frac{1}{2}mv^2$	$x = A \sin \omega t$
$KE = \frac{1}{2}I\omega^2$	$T = 2\pi \sqrt{\frac{m}{k}}$
PE = mgh	$T = 2\pi \sqrt{\frac{L}{g}}$
$PE = \frac{1}{2}kx^2$	$v = f\lambda$
$\Delta \ell = \alpha \ell_0 \Delta T$	$v = \sqrt{\frac{T}{2}}$
$Q = mc \Delta T$	Vμ
Q = mL	$2L = n\lambda$, <i>n</i> is an integer
$\frac{Q}{\Delta t} = \frac{kA\Delta T}{d}$	$4L = n\lambda$, <i>n</i> is odd
$\Delta l = 0$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
$1 - \frac{1}{2} - 3 - \frac{1}{2}$	$n = \frac{c}{v}$
$\frac{-mv^2}{2} = \frac{-k_b}{2}$	1_1_1
$\Delta E = Q - P \Delta V$	$\frac{1}{f} - \frac{1}{s_i} + \frac{1}{s_0}$
	$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$
	$d \sin \theta = m\lambda$
	$I = I_0 \cos^2 \theta$