CONSTANTS

Description	Value
Acceleration of gravity on Earth (g)	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum (c)	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Planck's constant (h)	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Electron rest mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Proton rest mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Charge of electron	$-1.60 \times 10^{-19} \mathrm{C}$
Coulomb's constant $\left(k_{e}\right)$	$9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Boltzmann constant $\left(k_{b}\right)$	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Gas constant (R)	$8.31 \mathrm{~J} /\left(\mathrm{mol}^{\prime} \cdot \mathrm{K}\right)$
Gravitational constant (G)	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}{ }^{2}$
Permeability of free space $(\mu 0)$	$4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
Avogadro's number	$6.02 \times 10^{23} \mathrm{~mol}{ }^{-1}$

FORMULAS

NOTES

Not all formulas necessary are listed, nor are all formulas listed used on this test.
In questions on electricity and magnetism, the term current refers to "conventional current" and the use of the right-hand rule is assumed.

Mathematics	Matter and Its Interactions
$C=2 \pi r$	$E=h f$
$A=\pi r^{2}$	$E=m c^{2}$
$S A=4 \pi r^{2}$	$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$V=\frac{4}{3} \pi r^{3}$	$h f=\varphi+e V$
	$\Delta x \Delta p \geq h$
	$\Delta E \Delta t \geq h$
	$p=\frac{h}{\lambda}$

FORMULAS (continued)

Motion and Stability: Forces and Interactions	Motion and Stability: Forces and Interactions in Fields and Circuits
$\begin{aligned} & v_{f}=v_{i}+a t \\ & x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2} \\ & v_{f}^{2}-v_{i}^{2}=2 a\left(x_{f}-x_{i}\right) \\ & F=-k x \\ & F \leq \mu N \\ & F \Delta t=\Delta p \\ & \theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \\ & \omega_{f}=\omega_{i}+\alpha t \\ & v=r \omega \\ & a=r \alpha \\ & r=\frac{\sum m r}{\sum m} \\ & I=\sum m r^{2} \\ & \boldsymbol{\tau}=\mathbf{r} \times \mathbf{F} \\ & \sum \tau=I \boldsymbol{\alpha} \\ & \mathbf{L}=\mathbf{r} \times \mathbf{p} \\ & L=I \omega \end{aligned}$	$\begin{aligned} & F=\frac{G m_{1} m_{2}}{r^{2}} \\ & F=\frac{k_{e} q_{1} q_{2}}{r^{2}} \\ & a_{c}=\frac{v^{2}}{r} \\ & \mathbf{E}=\frac{\mathbf{F}}{q_{0}} \\ & \mathbf{E}=\left\|\frac{\Delta V}{\Delta r}\right\| \\ & V=\frac{k_{e} q}{r} \\ & R=\frac{\rho \ell}{A} \\ & V=I R \\ & R_{s}=\sum R_{i} \\ & \frac{1}{R_{p}}=\sum \frac{1}{R_{i}} \\ & P=I V \\ & C=\frac{Q}{V} \\ & C_{p}=\sum C_{i} \\ & \frac{1}{C}=\sum \frac{1}{C_{i}} \\ & \mathbf{F}=q \mathbf{v} \times \mathbf{B} \\ & \mathbf{F}=I \ell \times \mathbf{B} \\ & \varepsilon_{a v e}=-\frac{\Delta \varphi}{\Delta t} \\ & \varphi=B_{\perp} A \\ & \hline \end{aligned}$

FORMULAS (continued)

Energy	Waves and Their Applications in Technologies for Information Transfer
$\begin{aligned} & W=F \Delta x \\ & K E=\frac{1}{2} m v^{2} \\ & K E=\frac{1}{2} I \omega^{2} \\ & P E=m g h \\ & P E=\frac{1}{2} k x^{2} \\ & \Delta \ell=\alpha \ell_{0} \Delta T \\ & Q=m c \Delta T \\ & Q=m L \\ & \frac{Q}{\Delta t}=\frac{k A \Delta T}{d} \\ & P V=n R T \\ & \frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{b} T \\ & \Delta E=Q-P \Delta V \end{aligned}$	$\begin{aligned} & a=-\omega^{2} x \\ & x=A \sin \omega t \\ & T=2 \pi \sqrt{\frac{m}{k}} \\ & T=2 \pi \sqrt{\frac{L}{g}} \\ & v=f \lambda \\ & v=\sqrt{\frac{T}{\mu}} \\ & 2 L=n \lambda, n \text { is an integer } \\ & 4 L=n \lambda, n \text { is odd } \\ & n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\ & n=\frac{c}{v} \\ & \frac{1}{f}=\frac{1}{s_{i}}+\frac{1}{s_{0}} \\ & M=\frac{h_{i}}{h_{0}}=-\frac{s_{i}}{s_{0}} \\ & d \sin \theta=m \lambda \\ & I=I_{0} \cos ^{2} \theta \\ & M \end{aligned}$

