FORMULAS

Description	Formula
Gibbs free energy equation	$\Delta G = \Delta H - T \Delta S$
Nernst equation	$E = E^{\circ} - \left(\frac{0.0592 \text{ V}}{n}\right) \log Q \text{ at 298 K}$
Relationship between emf and free energy change for reactants and products in their standard states	$\Delta G^{\circ} = -nFE^{\circ}$
Energy change as an electron transitions between energy states	$\Delta E = R_{\rm H} hc \left(\frac{1}{n_{\rm i}^2} - \frac{1}{n_{\rm f}^2} \right)$
Henderson-Hasselbalch equation	$pH = pK_a + log\left(\frac{[conjugate base]}{[acid]}\right)$
Coulombs (C)	C = amperes × seconds
Photon energy	$E = h_V$
Speed of light	$c = \lambda v$
Amount of heat (q)	$q = ms\Delta T$
Root-mean-square speed	$u_{\rm rms} = \sqrt{\frac{3RT}{M}}$ $\frac{r_1}{r} = \sqrt{\frac{M_2}{M}}$
Graham's law of diffusion	$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$

CONSTANTS

Description	Value
Ideal gas constant (R)	0.0821 L-atm/mol-K = 8.31 J/mol-K
Faraday constant (<i>F</i>)	9.65 × 10 ⁴ C/mol e ⁻ = 9.65 × 10 ⁴ J/V-mol e ⁻
Rydberg constant (R _H)	1.097 × 10 ⁷ m ⁻¹
Boltzmann constant (k)	1.38 × 10 ⁻²³ J/K
Planck's constant (h)	6.63 × 10 ⁻³⁴ J⋅s
Molal freezing point depression constant for water (K_f)	1.86°C/ <i>m</i>
Molal boiling point elevation constant for water (K_b)	0.51°C/ <i>m</i>
Heat of fusion of water (ΔH_{tus})	334 J/g = 80 cal/g = 6.01 kJ/mol
Heat of vaporization of water (ΔH_{vap})	2260 J/g = 540 cal/g = 40.7 kJ/mol
Specific heat (s) of water (liquid)	4.18 J/g⋅K = 4.18 J/g⋅°C = 1.0 cal/g⋅°C
Dissociation constant of water (K_w)	1.0 × 10 ⁻¹⁴ at 25°C
Standard atmospheric pressure (STP)	1 atm = 760 mm Hg = 760 torr = 101.325 kPa
Speed of light in a vacuum (c)	3.00 × 10 ⁸ m/s
1 calorie (cal)	4.184 J
1 watt (W)	1 J/s